APUS ePress

 English |  Español |  Français |  Italiano |  Português |  Русский |  Shqip

Early Readings in the Philosophy of Science

Isaac Newton (1642-1727)

alternate text
Sir Godfrey Kneller, Portrait of Isaac Newton, 1702

Sir Isaac Newton stands tall as both a practicing scientist and a philosopher, for all that he attributed his success to standing on the shoulders of giants. His contributions to physics, optics, and astronomy were standard science for centuries, and the Einsteinian revolution has modified rather than completely disproven many of his principles.

From a philosophical perspective, Newton's emphasis on fixed or absolute space when explaining motion contrasts dramatically with his contemporary Leibniz's support of a less deterministic conception of movement as relative rather than absolute. Each philosopher argued based in part on his understanding of the nature of God.

The selections below come from Newton's Principia Mathematica, where he defines absolute space, states the Laws of Motion, and explains his principles of good philosophical practice.

You can navigate throughout this chapter using the links below:

Front Matter

Axioms or Laws of Motion

Book III

Further Reading

The Mathematical Principles of Natural Philosophy (1726), trans. Andrew Motte (1729).

alternate text
Frontispiece to the Principia

Front Matter

Definitions: Scholium

Hitherto I have laid down the definitions of such words as are less known, and explained the sense in which I would have them to be understood in the following discourse. I do not define time, space, place, and motion, as being well known to all. Only I must observe, that the common people conceive those quantities under no other notions but from the relation they bear to sensible objects. And thence arise certain prejudices, for the removing of which it will be convenient to distinguish them into absolute and relative, true and apparent, mathematical and common.

  I.  Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external, and by another name is called duration: relative, apparent, and common time, is some sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is commonly used instead of true time; such as an Hour, a Day, a Month, a Year.

  II.  Absolute space, in its own nature, without relation to anything external, remains always similar and immovable. Relative space is some movable dimension or measure of the absolute spaces; which our senses determine by its position to bodies; and which is commonly taken for immovable space; such is the dimension of a subterraneous, an aerial, or celestial space, determined by its position in respect of the earth. Absolute and relative space are the same in figure and magnitude; but they do not remain always numerically the same. For if the Earth, for instance, moves; a space of our Air, which relatively and in respect of the Earth, remains always the same, will at one time be one part of the absolute space into which the Air passes; at another time it will be another part of the same, and so, absolutely understood, it will be perpetually mutable.

  III. Place is a part of space which a body takes up, and, is according to the space, either absolute or relative. I say, a Part of Space; not the situation, nor the external surface of the body. For the places of equal Solids, are always equal; but their superficies, by reason of their dissimilar figures, are often unequal. Positions properly have no quantity, nor are they so much the places themselves, as the properties of places. The motion of the whole is the same thing with the sum of the motions of the parts, that is, the translation of the whole, out of its place, is the same thing with the sum of the translations of the parts out of their places; and therefore the Place of the whole, is the same thing with the Sum of the places of the parts, and for that reason, it is internal, and in the whole body.

  IV. Absolute motion, is the translation of a body from one absolute place into another; and Relative motion, the translation from one relative place into another. Thus in a Ship under sail, the relative place of a body is that part of the Ship, which the Body possesses; or that part of its cavity which the body fills, and which therefore moves together with the Ship: And Relative rest, is the continuance of the Body in the same part of the Ship, or of its cavity. But Real, absolute rest, is the continuance of the Body in the same part of that Immovable space, in which the Ship itself, its cavity, and all that it contains, is moved. Wherefore, if the Earth is really at rest, the Body which relatively rests in the Ship, will really and absolutely move with the same velocity which the Ship has on the Earth. But if the Earth also moves, the true and absolute motion of the body will arise, partly from the true motion of the Earth, in immovable space; partly from the relative motion of the Ship on the Earth: and if the body moves also relatively in the Ship; its true motion will arise, partly from the true motion of the Earth, in immovable space, and partly from the relative motions as well of the Ship on the Earth, as of the Body in the Ship; and from these relative motions, will arise the relative motion of the Body on the Earth. As if that part of the Earth where the Ship is, was truly mov'd toward the East, with a velocity of 10010 parts; while the Ship it self with a fresh gale, and full sails, is carry'd towards the West, with a velocity exprss'd by 10 of those parts; but a Sailor walks in the Ship towards the East, with 1 part of the said velocity: then the Sailor will be moved truly and absolutely in immovable space towards the East with a velocity of 10001 parts, and relatively on the Earth towards the West, with a velocity of 9 of those parts.

Absolute time, in Astronomy, is distinguish'd from Relative, by the Equation or correction of the vulgar time. For the natural days are truly unequal, though they are commonly consider'd as equal, and used for a measure of time: Astronomers correct this inequality for their more accurate deducing of the celestial motions. It may be, that there is no such thing as an equable motion, whereby time may be accurately measured. All motions may be accelerated and retarded, but the True, or equable progress, of Absolute time is liable to no change. The duration or perseverance of the existence of things remains the same, whether the motions motions are swift or slow, or none at all: and therefore it ought to be distinguish'd from what are only sensible measures thereof; and out of which we collect it, by means of the Astronomical equation. The necessity of which Equation, for determining the Times of a phænomenon, is evinc'd as well from the experiments of the pendulum clock, as by eclipses of the Satellites of Jupiter.

As the order of the parts of Time is immutable, so also is the order of the parts of Space. Suppose those parts to be mov'd out of their places, and they will be moved (if the expression may be allowed) out of themselves. For times and spaces are, as it were, the Places as well of themselves as of all other things. All things are placed in Time as to order of Succession; and in Space as to order of Situation. It is from their essence or nature that they are Places; and that the primary places of things should be moveable, is absurd. These are therefore the absolute places; and translations out of those places, are the only Absolute Motions.

But because the parts of Space cannot be seen, or distinguished from one another by our Senses, therefore in their stead we use sensible measures of them. For from the positions and distances of things from any body consider'd as immovable, we define all places: and then with respect to such places, we estimate all motions, considering bodies as transfer'd from some of those places into others. And so instead of absolute places and motions, we use relative ones; and that without any inconvenience in common affairs: but in Philosophical disquisitions, we ought to abstract from our senses, and consider things themselves, distinct from what are only sensible measures of them. For it may be that there is no body really at rest, to which the places and motions of others may be referr'd. But we may distinguish Rest and Motion, absolute and relative, one from the other bi their Properties, Causes and Effects. It is a property of Rest, that bodies really at rest do rest in respect of one another. And therefore as it is possible, that in the remote regions of the fixed Stars, or perhaps far beyond them, there may be some body absolutely at rest; but impossible to know from the position of bodies to one another in our regions, whether any of these do keep the same position to that remote body; it follows that absolute rest; cannot be determined from the position of bodies in our regions.

It is a property of motion, that the parts, which retain given positions to their wholes, do partake of the motions of those wholes. For all the parts of revolving bodies endeavour to recede from the axe of motion; and the impetus of bodies moving forwards, arises from the joint impetus of all the parts. Therefore, if surrounding bodies are mov'd, those that are relatively at rest within them, will partake of their motion. Upon which account, the true and absolute motion of a body cannot be determin'd by the translation of it from those which only seem to rest. For the external bodies ought not only to appear at rest, but to be really at rest. For otherwise, all included bodies, beside their translation from near the surrounding ones, partake likewise of their true motions; and tho' that translation was not made they would not be really at rest, but only seem to be so. For the surrounding bodies stand in the like relation to the surrounded, as the exterior part of a whole does to the interior, or as the shell does to the kernel; but, if the shell moves, the kernel will also move, as being part of the whole, without any removal from near the shell.

A property near a kin to the preceding, is this, that if a place is mov'd, whatever is placed therein moves along with it; and therefore a body, which is mov'd from a place in motion. partakes also of the motion of its place. Upon which account all motions from places in motion, are no other than parts of entire and absolute motions; and every entire motion is composed out of the motion of the body out of its first place, and the motion of this place out of its place, and so on; until we come to some immovable place, as in the before mention'd example of the Sailor. Wherefore entire and absolute motions can be no otherwise determin'd than by immovable places; and for that reason I did before refer those absolute motions to immovable places, but relative ones to moveable places. Now no other places are immovable, but those that, from infinity to infinity, do all retain the same given positions one to another; and upon this account, must ever remain unmov'd; and do thereby constitute, what I call, immovable space.

The Causes by which true and relative motions are distinguished, one from the other, are the forces impress'd upon bodies to generate motion. True motion is neither generated nor alter'd, but by some force impress'd upon the body moved: but relative motion may be generated or alter'd without any force impress 'd upon the body. For it is sufficient only to impress some force on other bodies with which the former is compar'd, that by their giving way, that relation may be chang'd, in which the relative rest or motion of this other body did consist. Again, True motion suffers always some change from any force impress'd upon the moving body; but Relative motion does not necessarily undergo any change, by such forces. For if the same forces are likewise impress'd on those other bodies, with which the comparison is made, that the relative position may be preserved, then that condition will be preserv'd, in which the relative motion consisits. And therefore, any relative motion may be changed, when the true motion remains unalter'd, and the relative may be preserv'd, when the true suffers some change. Upon which accounts, true motion does by no means consist in such relations.

The Effects which distinguish absolute from relative motion are, the forces of receding from the axe of circular motion. For there are no such forces in circular motion purely relative, but in a true and absolute circular motion, they are greater or less, according to the quantity of the motion. If a vessel, hung by a long cord, is so often turned about that the cord is strongly twisted, then fill'd with water, and held at rest together with the water; after by the sudden action of another force, it is whirl'd about the contrary way, and while the cord is untwisting it self the vessel continues for some time in this motion; the surface of the water will at first be plain, as before the vessel began to move: but the vessel, by gradually communicating its motion to the water, will make it begin sensibly to revolve. and recede by little and little from the middle, and ascend to the sides of the vessel, forming it self into a concave figure, (as I have experienced) and the swifter the motion becomes, the higher will the water rise, till at last, performing its revolutions in the same times with the vessel, it becomes relatively at rest in it. This ascent of the water shews its endeavour to recede from the axe of its motion; and the true and absolute circular motion of the water, which is here directly contrary to the relative, discovers it self and may be measured by this endeavour. At first, when the relative motion of the water in the vessel was greatest greatest it produc'd no endeavour to recede from the axe: the water shew'd no tendency to the circumference, nor any ascent towards the sides of the vessel, but remain'd of a plain surface, and therefore its True circular motion had not yet begun. But afterwards, when the relative motion of the water had decreas'd the ascent thereof towards the sides of the vessel, prov'd its endeavour to recede from the axe; and this endeavour shew'd the real circular motion of the water perpetually increasing, till it had acquit'd its greatest quantity, when the water rested relatively in the vessel. And therefore this endeavour does not depend upon any translation of the water in respect of the ambient bodies, nor can true circular motion be defin'd by such translations. There is only one real circular motion of any one revolving body, corresponding to only one power of endeavouring to recede from its axe of motion, as its proper and adequate effect: but relative motions in one and the same body are innumerable, according to the various relations it bears to external bodies, and like other relations, are altogether destitute of any real effect, any otherwise than they may perhaps participate of that one only true motion. And therefore in their system who suppose that our heavens, revolving below the sphere of the fixt Stars, carry the Planets along with them; the several parts of those heavens, and the Planets, which are indeed relatively at rest in their heavens, do yet really move. For they change their position one to another (which never happens to bodies truly at rest) and being carried together with their heavens, participate of their motions, and as parts of revolving wholes, endeavour to recede from the axe of their motions.

Wherefore relative quantities, are not the quantities themselves, whose names they bear, but those sensible measures of them (either accurate or inaccurate) which are commonly used instead of the measur'd quantities them'elves. And if the meaning of words is to be determin'd by their use; then by the names Time, Space, Place and Motion, their measures are properly to be understood; and the expression will be unusual, and purely Mathematical, if the measured quantities themselves are meant. Upon which account, they do strain the Sacred Writings, who there interpret those words for the measur'd quantities. Nor do those less defile the purity of Mathematical and Philosophical truths, who confound real quantities themselves with their relations and vulgar measures.

It is indeed a matter of great difficulty to discover, and effectually to distinguish, the True motion of particular bodies from the Apparent: because the parts of that immovable space in which those motions are perform'd, do by no means come under the observation of our senses. Yet the thing is not altogether desperate; for we have some arguments to guide us, partly from the apparent motions, which are the differences of the true motions; partly from the forces, which are the causes and effects of the true motions. For instance, if two globes kept at a given distance one from the other, by means of a cord that connect them, were revolv'd about their common centre of gravity; we might, from the tension of the cord, discover the endeavour of the globes to recede from the axe of their motion, and from thence we might compute the quantity of their circular motions. And then if any equal forces should be impress'd at once on the alternate faces of the globes to augment or diminish their circular motions; som the encrease or decrease of the tension of the cord, we might infer the increment or decrement of their motions; and thence would be found, on what faces those forces ought to be impress'd, that the motions of the globes might be most augmented. that is, we might discover their hindermost faces, or those which, in the circular motion, do follow. But the faces which follow being known, and consequently, the opposite ones that precede, we should likewise know the determination of their motions. And thus we might find both the quantity and the determination of this circular motion, ev'n in an immense vacuum, where there was nothing external or sensible with which the globes could be compar'd. But now if in that space some remote bodies were plac'd that kept always a given position one to another, as the Fixt Stars do in our regions; we cou'd not indeed determine from the relative translation of the globes among those bodies, whether the motion did belong to the globes or to the bodies. But if we observ'd the cord, and found that its tension was that very tension which the motions of the globes requir'd, we might conclude the motion to be in the globes. and the bodiesto be at rest; and then, lastly, from the translation of the globes among the bodies, we should find the determination of their motions. But how we are to collect the true motions from their causes, effects, and apparent differences; and vice versa, how from the motions, either true or apparent, we may come to the knowledge of their causes and effects, shall be explain'd more at large in the following Tract. For to this end it was that I compos'd it.

Axioms or Laws of Motion

alternate text
Illustration of Newton's Cannon

Law I.

Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon.

Projectiles persevere in their motions, so far as they are not retarded by the resistance of the air, or impelled downwards by the force of gravity to stop, whose parts by their cohesion are perpetually drawn aside from rectilinear motions, does not cease its rotation, otherwise than as it is retarded by the air. The greater bodies of the planets and comets, meeting with less resistance in more free spaces, preserve the motions both progressive and circular for a much longer time.

Law II.

The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the straight line in which that force is impressed.

If any force generates a motion, a double force will generate double the motion, a triple force triple the motion, whether that force be impressed altogether and at once, or gradually and successively. And this motion (being always directed the same way with the generating force), if the body moved before, is added to or subtracted from the former motion, according as they directly conspire with or are directly contrary to each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the determination of both.

Law III.

To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that other. If you press a stone with your finger, the finger is also pressed by the stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will be equally drawn back towards the stone: for the stretched rope, endeavoring to relax or unbend itself, will draw the horse as much towards the stone as it does the stone towards the horse. It will obstruct the progress of the one as much as it advances that of the other. If a body impinge upon another and by its force change the motion of the other, that body also (because of the equality of. the mutual pressure) will undergo an equal change in its own motion towards the contrary part. The changes made by these actions are equal, not in the velocities but in the motions of bodies; that is to say, if the bodies are not hindered by any other impediments. For, because the motions are equally changed, the changes of the velocities made towards contrary parts are reciprocally proportional to the bodies. This law takes place also in attractions, as will be proved in the next scholium.

Book III

The Rules of Reasoning in Philosophy

Rule I

We are to admit no more causes of natural things, than such as are both true and sufficient to explain their appearances.

To this purpose the philosophers say, that Nature do's nothing in vain, and more is in vain, when less will serve; for Nature is pleas'd with simplicity, and affects not the pomp of superfluous causes.

Rule II

Therefore to the same natural effects we must, as far as possible, assign the same causes.

As to respiration in a man, and in a beast; the descent of stones in Europe and in America; the light of our culinary fire and of the Sun; the reflection of light in the Earth, and in the Planets.

Rule III

The qualities of bodies, which admit neither intension nor remission of degrees, and which are found to belong to all bodies within the reach of our experiments, are to be esteemed the universal qualities of all bodies whatsoever.

For since the qualities of bodies are only known to us by experiments, we are to hold for universal, all such as universally agree with experiments; and such as are not liable to diminution, can never be quite taken away. We are certainly not to relinquish the evidence of experiments for the sake of dreams and vain fictions of our own devising; nor are we to recede from the analogy of Nature, which uses to be simple, and always consonant to itself. We no otherwise know the extension of bodies, than by our senses, nor do these reach it in all bodies; but because we perceive extension in all that are sensible, therefore we ascribe it universally to all others also.

That abundance of bodies are hard we learn by experience. And because the hardness of the whole arises from the hardness of the parts, we therefore justly infer the hardness of the undivided particles not only of the bodies we feel but of all others. That all bodies are impenetrable, we gather not from reason, but from sensation. The bodies which we handle we find impenetrable, and thence conclude impenetrability to be an universal property of all bodies whatsoever. That all bodies are moveable, and endow'd with certain powers (which we call the vires inertiae) of persevering in their motion or in their rest, we only infer from the like properties observ'd in the bodies which we have seen. The extension, hardness, impenetrability, mobility, and vis inertiae of the whole, result from the extension, hardness, impenetrability, mobility, and vires inertiae of the parts: and thence we conclude the least particles of all bodies to be also all extended, and hard and impenetrable, and moveable, and endow'd with their proper vires inertiae. And this is the foundation of all philosophy.

Moreover, that the divided but contiguous particles of bodies may be separated from one another, is matter of observation; and, in the particles that remain undivided, our minds are able to distinguish yet lesser parts, as is mathematically demonstrated. But whether the parts so distinguish'd, and not yet divided, may, by the powers of nature, be actually divided and separated from one another, we cannot certainly determine. Yet had we the proof of but one experiment, that any undivided particle, in breaking a hard and solid body, suffer'd a division, we might by virtue of this rule, conclude, that the undivided as well as the divided particles, may be divided and actually separated to infinity.

Lastly, If it universally appears, by experiments and astronomical observations, that all bodies about the Earth, gravitate towards the Earth; and that in proportion to the quantity of matter which they severally contain; that the Moon likewise, according to the quantity of its matter, gravitates towards the Earth; that, on the other hand, our Sea gravitates towards the Moon; and all the Planets mutually one towards another; and the Comets in like manner towards the Sun; we must, in consequence of this rule, universally allow, that all bodies whatsoever are endow'd with a principle of mutual gravitation. For the argument from the appearances concludes with more force for the universal gravitation of all bodies, than for their impenetrability; of which among those in the celestial regions, we have no experiments, nor any manner of observation. Not that I affirm gravity to be essential to bodies. By their vis insita I mean nothing but their vis inertiae. This is immutable. Their gravity is diminished as they recede from the Earth.

Rule IV

In experimental philosophy we are to look upon propositions collected by general induction from phenomena as accurately or very nearly true, notwithstanding any contrary hypotheses that may be imagined, till such time as other phenomena occur, by which they may either be made more accurate, or liable to exceptions.

This rule we must follow that the argument of induction may not be evaded by hypotheses.

alternate text
Sir Isaac Newton's Theory . . . For the Ladies

General Scholium.

The hypothesis of Vortices is press'd with many difficulties. That every Planet by a radius drawn to the Sun may describe areas proportional to the times of description, the periodic times of the several parts of the Vortices should observe the duplicate proportion of their distances from the Sun. But that the periodic times of the Planets may obtain the sesquiplicate proportion of their distances from the Sun, the periodic times of the parts of the Vortex ought to be in the sesquiplicate proportion of their distances. That the smaller Vortices may maintain their lesser revolutions about Saturn, Jupiter, and other Planets, and swim quietly and undisturb'd in the greater Vortex of the Sun, the periodic times of the parts of the Sun's Vortex should be equal. But the rotation of the Sun and Planets about their axes, which ought to correspond with the motions of their Vortices, recede far from all these proportions. The motions of the Comets are exceeding regular, are govern'd by the same laws with the motions of the Planets, and can by no means be accounted for by the hypothesis of  Vortices. For Comets are carry'd with very eccentric motions through all parts of the heavens indifferently, with a freedom that is incompatible with the notion of a Vortex.

Bodies, projected in our air, suffer no resistance but from the air. Withdraw the air, as is done in Mr. Boyle's vacuum, and the resistance ceases. For in this void a bit of fine down and a piece of solid gold descend with equal velocity. And the parity of reason must take place in the celestial spaces above the Earth's atmosphere; in which spaces, where there is no air to resist their motions, all bodies will move with the greatest freedom; and the Planets and Comets will constantly pursue their revolutions in orbits given in kind and position, according to the laws above explain'd. But though these bodies may indeed persevere in their orbits by the mere laws of gravity, yet they could by no means have at first deriv'd the regular position of the orbits themselves from those laws

The six primary Planets are revolv'd about the Sun,  in circles concentric with the Sun, and with motions  directed towards the same parts and almost in the same  plane. Ten Moons are revolv'd about the Earth, Jupiter and Saturn, in circles concentric with them, with the  same direction of motion, and nearly in the planes of the orbits of those Planets. But it is not to be conceived that mere mechanical causes could give birth to so many regular motions: since the Comets range over all parts of the heavens, in very eccentric orbits. For by that kind of motion they pass easily through the orbs of the Planets, and with great rapidity; and in their aphelions, where they move the slowest, and are detain'd the longest, they recede to the greatest distances from each other, and thence suffer the least disturbance from their mutual attractions. This most beautiful System of the Sun, Planets and Comets, could only proceed from the counsel and dominion of an intelligent and powerful being. And if the fixed Stars are the centers of other like systems, these being form'd by the like wise counsel, must be all subject to the dominion of One; especially, since the light of the fixed Stars is of the same nature with the light of the Sun, and from  every system light passes into all the other systems. And lest the systems of the fixed Stars should, by their  gravity, fall on each other mutually, he hath placed those Systems at immense distances one from another.

This Being governs all things, not as the soul of the world, but as Lord over all: And on account of his dominion he is wont to be called Lord God παντοκρáτωρ or Universal Ruler. For God is a relative word, and has a respect to servants; and Deity is the dominion of God, not over his own body, as those imagine who fancy God to be the soul of the world, but over servants.  The supreme God is a Being eternal, infinite, absolutely perfect; but a being, however perfect, without dominion, cannot be said to be Lord God; for we say, my God, your God, the God of Israel, the God of Gods, and Lord of Lords; but we do not say, my Eternal, your Eternal, the Eternal of Israel, the Eternal of Gods; we do not say, my Infinite, or my Perfect: These are titles which have no respect to servants. The word God usually [1] signifies Lord; but every lord is not a God. It is the dominion of a spiritual being which constitutes a God; a true, supreme or imaginary dominion makes a true, supreme or imaginary God. And from his true dominion it follows, that the true God is a Living, Intelligent and Powerful Being; and from his other perfections, that he is Supreme or most Perfect. He is Eternal and Infinite, Omnipotent and Omniscient; that is, his duration reaches from Eternity to Eternity; his presence from Infinity to Infinity; he governs all things, and knows all things that are or can be done. He is not Eternity or Infinity, but Eternal and Infinite; he is not Duration or Space, but he endures and is present. He endures for ever, and is every where present; and by existing always and every where, he constitutes Duration and Space. Since every particle of Space is always, and every indivisible moment of Duration is every where,certainly the Maker and Lord of all things cannot be never and no where. Every soul that has perception is, though in different times and in different organs of sense and motion, still the same indivisible person. There are given successive parts in duration, co-existant parts in space, but neither the one nor the other in the person of a man, or his thinking principle; and much less can they be found in the thinking substance of God. Every man, so far as he is a thing that  has perception, is one and the same man during his whole life, in all and each of his organs of sense. God is the same God, always and every where. He is omnipresent, not virtually only, but also substantially; for virtue cannot subsist without substance. In him [2] are all things contained and moved; yet neither affects the other: God suffers nothing from the motion of bodies; bodies find no resistance from the omnipresence of God. 'Tis allowed by all that the supreme God exists necessarily; and by the same necessity he exists always and every where. Whence also he is all similar,  all eye, all ear, all brain, all arm, all power to perceive, to understand, and to act; but in a manner not at all human, in a manner not at all corporeal, in a manner utterly unknown to us. As a blind man has no idea of  colours, so have we no idea of the manner by which the all-wise God perceives and understands all things. He  is utterly void of all body and bodily figure, and can therefore neither be seen, nor heard, nor touched; nor ought to be worshipped under the representation of any corporeal thing. We have ideas of his attributes, but what the real substance of any thing is, we know not. In bodies we see only their figures and colours, we  hear only the sounds, we touch only their outward  surfaces, we smell only the smells, and taste the favours; but their inward substances are not to be known, either by our senses, or by any reflex act of our minds; much less then have we any idea of the substance of God. We know him only by his most wise and excellent contrivances of things, and final causes; we admire him for his perfections; but we reverence and adore him on account of his dominion. For we adore him as his servants; and a God without dominion, providence, and final causes, is nothing else but Fate and Nature. Blind metaphysical necessity, which is certainly the same always and every where, could produce no variety of things. All that diversity of natural things which we find, suited to different times and places, could arise from nothing but the ideas and will of a Being necessarily existing. But by way of allegory, God is said to see, to speak, to laugh, to love, to hate, to desire, to give, to receive, to rejoice, to be angry, to fight, to frame, to work, to build. For all our notions of God  are taken from the ways of mankind, by a certain similitude which, though not perfect, has some likeness however. And thus much concerning God; to discourse of whom from the appearances of things, does  certainly belong to Natural Philosophy.

Hitherto we have explain'd the phænomena of the heavens and of our sea, by the power of Gravity, but  have not yet assign'd the cause of this power. This is certain, that it must proceed from a cause that penetrates to the very centers of the Sun and Planets, without suffering the least diminution of its force; that operates, not according to the quantity of the surfaces of the particles upon which it acts, (as mechanical causes use to do,) but according to the quantity of the solid matter which they contain, and propogates its virtue on all sides, to immense distances, decreasing always in the duplicate proportion of the distances. Gravitation towards the Sun, is made up out of the gravitations towards the several particles of which the body of the Sun is compos'd; and in receding from the Sun, decreases accurately in the duplicate proportion of the distances, as far as the orb of Saturn, as evidently appears from the quiescence of the aphelions of the Planets; nay, and even to the remotest aphelions of the Comets, if those aphelions are also quiescent. But hitherto I have not been able to discover the cause of those properties of gravity from phænomena, and I frame no hypothesis. For whatever is not deduc'd from the phænomena, is to be called an hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy. In this philosophy particular propositions are inferr'd from the phænomena, and afterwards render'd general by induction. Thus it was that the impenetrability, the mobility, and the impulsive force of bodies, and the laws of motion and of gravitation, were discovered. And to us it is enough, that gravity does really exist, and act according to laws which we have explained, and abundantly serves to account for all  the motions of the celestial bodies, and of our sea.

And now we might add something concerning a certain most subtle Spirit, which pervades and lies hid in all gross bodies; by the force and action of which Spirit, the particles of bodies mutually attract one another at near distances, and cohere, if contiguous; and electric bodies operate to greater distances, as well repelling as attracting the neighbouring corpuscles; and light is emitted, reflected, refracted, inflected, and heats bodies; and all sensation is excited, and the members of animal bodies move at the command of the will, namely, by the vibrations of this Spirit, mutually propogated along the solid filaments of the nerves, from the outward organs of sense to the brain, and from the brain into the muscles. But these are things that cannot be explain'd in few words, nor are we furnish'd with that sufficiency of experiments which is required to an accurate determination and demonstration of the laws by which this electric and elastic spirit operates.

Further Reading

The Chymistry of Sir Isaac Newton. Online exhibit. Indiana University. Web.

Janiak, Andrew. "Newton's Philosophy." The Stanford Encyclopedia of Philosophy. Ed. Edward N. Zalta. 2009. Web.

"Newton." Philosophy of Cosmology. Web.

The Newton Project. Web.

Rynasiewicz, Robert. "Newton's Views on Space, Time, and Motion." The Stanford Encyclopedia of Philosophy Ed. Edward N. Zalta. 2012. Web.

Smith, George. "Isaac Newton." The Stanford Encyclopedia of Philosophy. Ed. Edward N. Zalta. Web.

Snobelen, Stephen D. Isaac Newton: Theology, Prophecy, Science and Religion. Web.

Voltaire. "Letter XIV: On Descartes and Newton." Letters on the English.

There has been error in communication with Booktype server. Not sure right now where is the problem.

You should refresh this page.